Design of Post‑installed Anchor as per ACI 318/BNBC 2020 – Ultimate Guide with Numerical Example

Design of Post‑installed Anchor as per ACI 318/BNBC 2020 – Ultimate Guide with Numerical Example

Post‑installed anchors (mechanical expansion anchors, undercut anchors, and adhesive/chemical anchors) are commonly used to attach structural and non‑structural elements to existing concrete. This guide addresses structural design of such anchors (tension, shear, combined) using the ACI 318-08 and BNBC 2020 anchorage provisions.


We cover the design process, the governing limit states, and a full numeric worked example so you can copy the workflow into your office standard checks.


Key code references and applicability


> In practice: treat ACI as the technical reference for anchor limit states and BNBC as the regulatory overlay in Bangladesh.


1. Anchor bolt failure modes


Factors Influencing design capacity


3. Design workflow – step‑by‑step

  1. Get governing loads: Extract factored loads (ultimate / LRFD or factored strength design) from structural analysis. For non‑structural elements use relevant BNBC/ACI load factors as applicable.
  2. Decide anchor type & manufacturer: Choose an anchor family that is qualified (ACI 355.2 for mechanical, ACI 355.4 for adhesives if required) and get the Manufacturer’s Printed Installation Instructions (MPII) and qualification data.
  3. Select preliminary geometry: estimate anchor diameter d, effective embedment $h_{ef}$, anchor spacing (s), and edge distances $c_a$ based on practical layout and MPII limits.
  4. Compute steel (anchor) strength: nominal steel strength $N_{sa}$ and shear capacity $V_{sa}$ per ACI steel equations (use manufacturer’s tensile area / strength values for post‑installed anchors).
  5. Compute concrete capacities:
    • Concrete breakout in tension (single anchor or group) — nominal $N_{cb}$ or $N_{cbg}$
    • Concrete breakout in shear (nominal $V_{cbg}$)
    • Pullout strength in tension (or bond strength for adhesive anchors where relevant)
    • Side-face blowout strengh in tension (typically does not governs for post-installed anchor)
    • Pryout strength in shear

> Apply modifier factors for cracked/uncracked concrete, eccentricity, spacing, slab thickness etc. (ACI modification factors).


  1. Apply strength reduction factors $\phi$ per ACI to obtain design strengths (e.g. φ for tension anchors, for shear, for combined checks).
  2. Compare design capacity ≥ factored demand for each failure mode. If any mode fails, revise geometry (increase $h_{ef}$, anchor spacing, edge distance) or change anchor type.
  3. Combined tension + shear interaction: check interaction formulae provided by ACI when applicable (combined demand must not exceed capacity envelope).
  4. Serviceability & durability checks: corrosion protection, temperature, chemical exposure, cyclic loading, seismic requirements.
  5. Installation & QA: verify installation per MPII, torque values, hole cleaning, adhesive cure time, and periodic inspection documentation.

4. Full numerical example (step‑by‑step)

Problem statement:
Design anchor bolt for a facade mullion clump, to be anchored with post-installed mechanical anchor to a 200mm thick slab. The factored tensile load is 16.0 kN and factored shear load is 4.0 kN. Concrete is normal weight, $f'_c$ = 27.5 MPa, assume cracked at service consition. Consider 4—M12 Grade 5.8 anchor bolt with effective embedment depth of 70 mm.


The geometry of the system is following –
U Clump Load section


Goal: check steel strength, concrete breakout, and determine if the anchor is OK or needs revision.


Step 1 – Design data and load analysis

Diameter of anchor bolt, $d_a$ = 12 mm
Effective embedment length, $h_{ef}$ = 70 mm
Compressive strength of concrete, $f'_c$ = 27.5 MPa
Yield strength of anchor, $f_y$ = 400 MPa (Grade 5.8)
Tensile strength of anchor, $f_u$ = 500 Mpa (Grade 5.8)


Applying the equations of static equilibrium: $ \sum F_y^{→+}=0, \sum F_z^{↑+}=0 $,


> Tension force, $R_y$ = 16.0 kN
> Tension force in single bolt = 16.0/4 = 4.0 kN (No. of anchor bolt = 4)


> Shear force, $R_z$ = 4.0 kN
> Shear force in single bolt = 4.0/4 = 1.0 kN


Step 2 – Steel strength in tension

$\phi N_{sa} = \phi · A_{se,N} · f_{uta}$ (kN) (Eqn. 6.K.3, BNBC 2020)


Where
$\phi$ – Strength reduction factor
$A_{se,N}$ – Tensile stress area ($mm^2$)
$f_{uta} = min(860, 1.9f_y, f_u)$ – Allowable tensile strength of anchor (MPa)
$N_{ua}$ – Tension force in single anchor (kN)
$\beta$ – Capacity ratio


$\phi$ $A_{se,N}$ $f_{uta}$ $\phi N_{sa}$ $N_{ua}$ $\beta_N$ $Check$
0.75 84.3 500 31.6 4.0 0.13 OK

Step 3 – Concrete breakout strength in tension

$\phi N_{cbg} = \phi · (\frac{A_{NC}}{A_{NCO}}) · \psi _{ec,N} · \psi _{ed,N} · \psi _{c,N} · \psi _{cp,N} · N_b$ (kN) (Eqn. 6.K.5, BNBC 2020)


Where
Concrete breakout strength in tension


$A_{NC}$ – Concrete failure area for anchor group ($mm^2$)
$A_{NCO} = 9 h_{ef}^2$ – Conc. failure area of single anchor w/o edge influence ($mm^2$)
$\psi _{ec,N}$ – Modification factor for eccentricity
$\psi _{ed,N} = min(0.7 + \frac{0.3 C_{a,min}}{1.5 h_{ef0}}, 1})$ – Modification factor for edge distance
$\psi _{c,N}$ – Modification factor for concrete condition (cracked)
$\psi _{cp,N}$ – Modification factor for post-installed anchor (cracked)
$N_b = k_c · \lambda · \sqrt{f'_c} · h_{ef0}^{1.5}$ – Basic concrete breakout strength (kN)
$k_c$ – Installation type factor
$\lambda$ – Modification factor for light-weight concrete
$N_{ug}$ – Tensile force in group of anchors (kN)


$\phi$ $A_{NC}$ $A_{NCO}$ $C_{a,min}$ $\psi _{ec,N}$ $\psi _{ed,N}$ $\psi _{c,N}$ $\psi _{cp,N}$ $k_c$ $\lambda$ $N_b$ $\phi N_{cbg}$ $N_{ug}$ $\beta_N$ $Check$
0.65 78000 44100 60 1.0 0.87 1.0 1.0 7 1 21.5 21.5 16.0 0.74 OK

Step 4 – Pullout strength in tension

$\phi N_{pn} = \psi · \psi _{c,p} · N_p$ (kN) (Eqn. 6.K.14, BNBC 2020)


Where
$\psi _{c,p}$ – Modification factor for concrete condition (cracked)
$N_p$ – Basic concrete pullout strength (5% fractile test, ACI 355.2) (kN)


$\phi$ $\psi _{c,p}$ $N_p$ $\phi N_{pn}$ $N_{ua}$ $\beta_N$ $Check$
0.7 1.0 20.0 14.0 4.0 0.29 OK

Step 5 – Concrete side-face blowout strength in tension

Splitting during installation rather than side face blowout strength governs post-installed anchor. Ref. Sec. K.5.4, BNBC 2020.


Step 6 – Steel strength in shear

$\phi V_{sa} = \phi · A_{se,V} · f_{uta}$ (kN) (Eqn. 6.K.19, BNBC 2020)


Where
$\phi$ – Strength reduction factor in shear
$V_{ua}$ – Tension force in single anchor (kN)


$\phi$ $A_{se,V}$ $f_{uta}$ $\phi V_{sa}$ $V_{ua}$ $\beta_V$ $Check$
0.65 84.3 500 16.4 1.0 0.06 OK

Step 7 – Concrete breakout strength in shear

$\phi V_{cbg} = \phi · \frac{A_{VC}}{A_{VCO}} · \psi _{ec,V} · \psi _{ed,V} · \psi _{c,V} · \psi _{h,V} · V_b$ (kN) (Eqn. 6.K.22, BNBC 2020)


Where
Concrete breakout strength in shear


$A_{VC}$ – Concrete failure area for anchor group $(mm^2$)
$A_{VCO} = 4.5 C_{a1}^2$ – Conc. failure area of single anchor w/o edge influence ($mm^2$)
$\psi _{ec,V}$ – Modification factor for eccentricity
$\psi _{ed,V} = min(0.7 + \frac{0.3 C_{a2}}{1.5 C_{s1}, 1})$ – Modification factor for edge distance
$\psi _{c,V}$ – Modification factor for concrete condition (cracked)
$\psi _{h,V} = max(\sqrt{\frac{1.5 C_{a1}}{h_a}}, 1)$ – Modification factor for concrete depth $h_a < 1.5 C_{a1}$
$V_b = 0.6 (\frac{l_e}{d_a})^{0.2} · \sqrt{d_a} · \lambda · \sqrt{f'_c} · (C_{a1})^{1.5} $ – Basic concrete breakout strength of single anchor (kN)
$l_e = min(h_{ef}, 8 d_a)$ – Load bearing length of anchor for shear (mm)
$V_{ug}$ – Shear force in group of anchors (kN)


$\phi$ $A_{VC}$ $A_{VCO}$ $C_{a1}$ $C_{a2}$ $h_a$ $\psi _{ec,V}$ $\psi _{ed,V}$ $\psi _{c,V}$ $\psi _{h,V}$ $l_e$ $V_b$ $\phi V_{cbg}$* $V_{ug}$ $\beta_V$ $Check$
0.7 32400 16200 60 - - 1.0 1.0 1.0 1.0 70 7.2 10.1 2.0 0.2 OK

*2 Two bolts in bolt group


Step 8 – Concrete pryout strength in shear

$\phi V_{cp} = \phi · k_{c,p} · N_{cp}$ (kN) (Eqn. 6.K.31, BNBC 2020)


Where
$k_{c,p}$ – Concrete pryout factor
$N_{cp} = N_{cbg}$ – Concrete breakout strength in tension (kN)


$\phi$ $k_{c,p}$ $N_{cp}$ $\phi V_{cp}$ $V_{ug}$ $\beta_V$ $Check$
0.7 2 33.1 46.4 2.0 0.04 OK

Step 9 – Interaction of tensile and shear force

$\beta_{NV} = (\beta_N)^{\zeta} + (\beta_V)^{\zeta}$ (Sec. K.7, BNBC 2020)


Where
$\beta_N$ – Highest design ratio from all tension failure mode
$\beta_V$ – Highest design ratio from all shear failure mode


$\beta_N$ $\beta_V$ $\zeta$ $\beta_{NV}$ $Check$
0.74 0.2 1.67 0.68 OK

5. Installation, QA & manufacturer instructions


6. Common pitfalls & practical tips